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ABSTRACT

Drilled shafts have become very popular deep foundation supports. Drilled shafts can
be constructed in a wider range of ground conditions with less noise and vibration
than driven piles. Quality assurance (QA) and quality control (QC) of drilled shafts
has become a concern due to difficulties in locating defects and determining load
bearing capacity. Various non-destructive evaluation (NDE) techniques have been
developed to estimate the integrity of the concrete. While NDE techniques provide a
powerful tool and have been widely accepted, many variables and unknowns can
affect the measurement results. Results are more difficult to interpret, leading to
unnecessary litigation over shaft integrity. In addition, influences of surrounding
ground, stress states under different load conditions, and crack development during

concrete curing further complicate determination of shaft performance.

This study focuses on the load bearing capacity evaluation of drilled shafts under
various conditions by analysis methods and numerical models. The analysis is
approached first from identification of design criterion and construction procedures,
with a brief review of NDE techniques. The analysis method is based on principles
and theorems from engineering mechanics, geotechnical engineering, concrete
chemistry, and geophysical engineering. The analysis results are used as input to the
numerical analysis. The numerical model employed in this research is incorporated
into the Geostructural Analysis Package (GAP), combining the widely accepted
numerical methods of Discrete Element Method (DEM), Particle Flow Method
(PFM), Material Point Method (MPM), and Finite Differencing (FD), together with

engineering mechanics constitutive models, concrete chemistry models,

111



thermodynamics models, and geophysical tomography and holography for
geotechnical engineering application. GAP has been successfully used for ground

characterization in highway engineering and mining operations.

This study explores many concerns recently raised for drilled shaft design,
construction and maintenance. Recommendations and conclusions may provide
engineers with more information and a better understanding of drilled shaft
foundations to revolutionize foundation design, concrete mix design, construction

techniques, NDE measurement, and defect evaluation, to improve performance and

efficiency with reduced litigation risk.

This abstract accurately represents the content of the candidate’s thesis. I recommend
its publication.
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